
CHAPTER 1

INTRODUCTION

There are di�erent aspects of the supersymmetric potential, here we have used the

perturbation process which is proposed by P. B. Abraham and H. E. Moses [1].

They have worked on a solved problem of quantum mechanical one dimensional

system. After that they have constructed an algorithm to �nd the exact pertur-

bation which gave the exact form of the potential for supersymmetric partner. By

using Gelfand-Levitan method [2] they have shown the elimination of the ground

state energy for the potential of a system where the other bound state energy has

not changed at all.

M. Bernstein and L. S. Brown [3] have shown some properties of supersymmetric

potential which is remarkable. Using Fokker-Planck equation [4], they have shown

the bistable potential property for �bosonic� particle and single potential well for

the �fermionic� particle.

C. V. Sukumar [5] has presented a systematic procedure for constructing a hier-

archy of non-relativistic Hamiltonians. This is the procedure we have followed to

�nd the potential where the eigenvalue spectrum remained the same except the

ground state eigenvalue. He has also developed the potentials predicted by Nieto

[6].

M. M. Nieto [7] has explained how the eigenvalue spectrum will be changed for

the perturbation. He has shown that (i) the normalization of the eigenvectors,

having the same eigenvalue, are changed or (ii) a �nite number of eigenvalue are

subtracted from the spectrum or (iii) a �nite number of eigenvalue are added to

the spectrum.
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(i) (ii) (iii)

[Fig 1: Schematic diagram of possible eigenvalue spectrum where (i) eliminating

ground state, (ii) adding ground state and (iii) normalization of eigenvector has

been shown]

D. Baye [8] has shown that the the deep and shallow nature of nucleus-nucleus

potential can be describe by supersymmetric quantum mechanics. He has also

shown that the shallow potentials are singular and strongly angular momentum

quantum number dependent and supersymmetric shallow potentials are phase

equivalent or phase di�ered by an integral multiple of π.

D. Baye [9] has also shown that a coupled-channel potential can be determined

which is phase equivalent to a given potential and whose bound spectrum is

identical except for one arbitrary bound state which is removed.

F. Cooper, A. Khare and U. Sukhatme [10] has shown the theoretical formulation

of supersymmetric quantum mechanics and many application of supersymmetry.

They have shown the property of shape invariance for all solvable potential.

A. A. Andrianov, M. V. Io�e and V.P.Spiridonov [11] has shown how the Witten

index [12] is changed for higher order supersymmetry.

C.V. Sukumar [13] has constructed re�ectionless potential and phase equivalent

potential using supersymmetry quantum mechanics.

Using variational method in supersymmetry quantum mechanics, E. D. Filho and

R. M. Ricotta [14] have constructed the energies of both the Harmonic Oscillator

and the Hulthen potential con�ned in three dimensions.
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V. A. Kosteleck� and N. Russell [15] have applied supersymmetric quantum me-

chanics to describe the particles trap. They have shown that the supersymmetric-

partner wave functions can be used to describe a valence fermion in a trap system

with an isotropic harmonic-oscillator potential.

A. Gangopadhyaya, J. V. Mallow, C. Rasinariu and U. P. Sukhatme [16] has

shown a process by which one can obtain analytic expressions for the eigenvalues

and eigenfunctions for all nonrelativistic shape invariant Hamiltonians.

A. Sergyeyev and B. M. Szablikowski [17] have constructed the cotangent universal

hierarchy. After that they have constructed (2+1)-dimensional double extension

of the cotangent universal hierarchy.

M. M. Nieto [18] has shown how a non-analytical potential cab be developed.

M. S. Berger and V. A. Kostelecky [19] have constructed supersymmetric �eld

theories that violate Lorentz and CPT symmetry. They have illustrated this with

some examples related to the original Wess-Zumino model.[20]

D. J. Fernandez C and N. F. Garcia [21] have reviewed the higher-order super-

symmetric quantum mechanics which involves di�erential intertwinning operators

of order greater than one. They have used iterations of �rst-order SUSY trans-

formations and direct technique for second order transformations.

In this paper, we have discussed about the characteristics of the potential of a

supersymmetric partner with the eigenvalue spectrum. We have calculated such

potential using the well known potential system of Simple Harmonic Oscillator

potential and Square well potential. We have calculated the Schrödinger equation

involving supersymmetric partner of Simple Harmonic Oscillator and Square well

potential both analytically and numerically when necessary.
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CHAPTER 2

FORMALISM

2.1. Supersymmetric Algebra

There are four fundamental interactions [22] in the nature. They are weak interac-

tion, strong interaction, electromagnetic interaction and gravitational interaction.

The physicists are trying to unify all the interactions for a long time.The elec-

tromagnetic interaction and weak interaction are already uni�ed into electroweak

interaction and also electromagnetic interaction and strong interaction into elec-

trostrong interaction [23]. But total uni�cation still remains un�nished. The term

supersymmetry is introduced in string theory [10] to the uni�cation process. It is

thought that using this in quantum �eld theory, all the fundamental interaction

can be uni�ed.

The term symmetry means the system remains invariant under translation or

rotations and hence the momentum become a constant of motion [24]. It can be

represented as

(2.1.1) [H, px] = 0

this commutator relation means that the HamiltonianH is symmetric under trans-

lations and the momentum px is a constant of motion.

Supersymmetry is a symmetry relating bosonic and fermionic degrees of freedom

[25]. This is an exciting idea but the implementation is complicated. We have seen

that the symmetry contains commutator relation. But anti-commutator relations

4



are involve in the supersymmetrc algebra [26] as

(2.1.2) {Qi, Qj} = δijH

(2.1.3) {Qi, H} = 0

where Qi are the charge operator.

In terms of particle states, a supermultiplet contains just two types of particles,

di�ering by a 1
2 unit of helicity. Heisenberg [27] has shown that perturbation

theory break down completely at high energy (about 300GeV) for the higher

order e�ects in the theory of weak interaction. To explain this he have explored

the idea of SUSY in 1970. Though the evidence of Supersymmetry [28] has not

directly observed, in nuclear physics experimental evidence of the presence of

supersymmetry is found in nature.

It invites us to contemplate in fermionic dimension i.e., the degrees of freedom can

extend the space-time co-ordinates. We can say that SUSY enlarge space-time to

�superspace� [10].

The phenomenologically important and true aspects is that SUSY implies degen-

erate multiplets of bosons and fermions [29].

It not only works well in Standard Model (SM) of particle physics but also provide

a solution to the �hierarchy problem� [10]. The another more important remarks

that we have from Supersymmetry is that it enables the String Theory.

For these various reason there are some �try it and see� approches to constructing

SUSY invariant theories.

SUSY algebra was �rst described by Haag, Lopuszanski and Sohnius [30]. Here

algebra means the generator of the appropriate symmetry transformations i.e.,

a group of transformations that leaves the Lagrangian invariant [31] and must
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obey the conservation law which is Noether's theorem [32]. The essential fea-

ture is that the superpartner have anticommutation relations among themselves.

Thus the SUSY algebra is involved with some commutation relations and some

anticommutation relations.

A fundamental aspect of any symmetry is the algebra associated with the symme-

try generators [25]. The generators Ti of supersymmetry satisfy the commutation

relations

(2.1.4) [Ti, Tj] = iεijkTk

where i, j and k run over the values 1, 2 and 3, and where the repeated index

k is summed over i.e., ε123 = +1, ε213 = −1 etc. Which is the same as angular

momentum operators in quantum mechanics, in the unit ~ = 1.

If the charge operator Qi be the generator then we have

(2.1.5) {Qi, Qj} = δijH

(2.1.6) {Qi, H} = 0

Where H is the Supersymmetric Hamiltonian and charge operators can repre-

sented as

(2.1.7) Q =

 0 0

A− 0

 Q† =

 0 A+

0 0


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There is no direct transformations between �elds with di�erent integer spins [33]

i.e., the charge operator, Qi can only change the spin by 1
2 and

(2.1.8) H = {Q,Q†} =

 A+A− 0

0 A−A+


From these algebric relations we have found some basic property of supersymmetry

[26]. The properties are:

• All particles belonging to one supermultiplet have the same mass.

• In a supersymmetric theory the energy H is always positive or semi-

positive.

• A supermultiplet always contains an equal number of bosonic and fermionic

degrees of freedom.

2.2. Factorization of Hamiltonian

Let us consider a Hermitian positive semi-de�nite operator of the form H =

A+A− in which A+ is the Hermitian adjoint of the operator A−. Let ψ be an

eigenfunction of H with eigenvalue E. The eigenvalue equation

(2.2.1) A+A−ψ = Eψ

leads, on multiplication from the left be A−, to

(2.2.2) A−A+(A−ψ) = E(A−ψ)

Equations (1)and (2)lead to the following theorem.
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Theorem 2.2.1. An eigenvalue of the operator A+A− is also an eigenvalue of

the operator A−A+, except when A−ψ = 0. The normalised eigenfunctions of

A+A−and A−A+, denoted by ψand φrespectively, are connected by the equations

(2.2.3) φ = E−
1
2A−ψ, ψ = E−

1
2A+φ

Bernstein and Brown [3] consider a Hamiltonian of the form H+ = A+A−, with

A± = (∓ ∂
∂x + 1

2
∂U
∂x ) for a speci�ed function U(x). They showed that the scalar

Hamiltonian H+ and its 'partner' H− = A−A+, corresponding to the potentials

V± = (1
2
∂U
∂x )2±1

2
∂2U
∂x2 , can be viewed as the 'bosonic' and the 'fermionic' components

of a supersymmetric Hamiltonian [10] as

(2.2.4) H = [(− ∂2

∂x2 +W 2)I + σ3
∂W

∂x
]

in which W = −1
2
∂U
∂x , I is the unit matrix and σ3 is the Pauli spin matrix. Since

H+ has a ground state with eigenvalue E = 0 and an eigenfunction that satis�es

A−ψ = 0, theorem 1 implies the following mapping of the eigenvalues of H− and

H+:

(2.2.5) E
(n)
− = E

(n+1)
+ n = 0, 1, 2 . . . . . . . . .

Thus, the energy of the �rst excited state of H+ by calculating the ground state

energy of H−.

We consider the non-relativistic Hamiltonian H = −1
2
∂2

∂x2 +V (x) for any potential

V (x) that can support at least one bound state. We factorise H in the form

(2.2.6) H = −1

2

∂2

∂x2 + V (x) ≡ A+A− + ε
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where

(2.2.7) A± =
1√
2
(± ∂

∂x
+ Ṽ (x))

The unknown function Ṽ (x) and the undetermined constant ε are then determined

by the consistency condition that

(2.2.8) Ṽ 2 +
∂Ṽ

∂x
= 2(V − ε)

This condition is clearly satis�ed if

(2.2.9) Ṽ =
1

ψ(0)

∂ψ(0)

∂x
& ε = E(0)

where ψ(0) and E(0) are the groundstate eigenfunction and eigenvalue of H. The

choice of the wavefunction in equation (2.2.9) is motivated by the consideration

that A+A− is required to be a positive semi-de�nite operator with eigenvalues

≥ 0. This leads to the following theorem.

Theorem 2.2.2. Any Hamiltonian of the form H = −1
2
∂2

∂x2 + V (x),which has a

ground state (ψ(0), E(0)) can be factorised as H = A+A− + E(0) with A± =

1√
2
[± ∂

∂x + 1
ψ(0)

∂ψ(0)

∂x ].

We now show that theorems 1 and 2 enable the generation of a heirarchy of

the di�erent members of the gierarchy. Starting from a Hamiltonian H1 for a

potential V1(x) that can support M bound states with a ground state (ψ
(0)
1 , E

(0)
1 )

and applying theorem 2 we get

(2.2.10) H1 = −1

2

∂2

∂x2 + V1(x) ≡ A+
1 A
−
1 + E

(0)
1

(2.2.11) A±1 =
1√
2
[± ∂

∂x
+

1

ψ
(0)
1

∂ψ
(0)
1

∂x
]
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We can now construct a 'supersymmetric partner' H2 with potential V2(x) given

by

(2.2.12) H2 = −1

2

∂2

∂x2 + V2(x) ≡ A−1 A
+
1 + E

(0)
1

(2.2.13) V2(x) = V1(x) + [A−1 , A
+
1 ] = V1(x)−

∂2

∂x2 lnψ
(0)
1

Since A−1 ψ
(0) = 0, theorem 1 then shows that the spectra of H1and H2 satisfy the

condition that

(2.2.14) E
(n)
2 = E

(n+1)
1 n = 0, 1, 2, ...........(M − 2)

and the normalised eigenfunctions of H1 and H2 are connected by the equation

(2.2.15) ψ
(n)
2 = [E

(n+1)
1 − E(0)

1 ]−
1
2A−1 ψ

(n+1)
1

By applying theorem 2 to the new Hamiltonian H2 we can refactorise H2in terms

of its ground state (ψ
(0)
2 , E

(0)
2 ) as

(2.2.16) H2 = −1

2

∂2

∂x2 + V2(x) ≡ A+
2 A
−
2 + E

(0)
2

(2.2.17) A±2 =
1√
2
[± ∂

∂x
+

1

ψ
(0)
2

∂ψ
(0)
2

∂x
]

This is the new factorisation ofH2 in turn leads to a new 'supersymmetric partner'

H3 given by

(2.2.18) H3 = A−2 A
+
2 + E

(0)
2
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whose spectrum can be determined by the application of theorem 1.

By reapeted application of theorems 1 and 2 we can thus generate a hierarchy of

Hamiltonians given by

(2.2.19) Hn = −1

2

∂2

∂x2 + Vn(x) ≡ A+
nA
−
n + E(0)

n = A−n−1A
+
n−1 + E

(0)
n−1

(2.2.20) A±n =
1√
2
[± ∂

∂x
+

1

ψ
(0)
n

∂ψ
(0)
n

∂x
]

(2.2.21)

Vn(x) = Vn−1(x)−
∂2

∂x2 lnψ
(0)
n−1 = V1(x)−

∂2

∂x2 ln(ψ
(0)
1 ψ

(0)
2 ............ψ

(0)
n−1 n = 2, 3, 4.....M)

whose spectra satisfy the conditions

(2.2.22)

E(m)
n = E

(m+1)
n−1 = ........... = E

(n+m−1)
1 , m = 0, 1, 2.......M−n & n = 2, 3, 4........M

ψ
(m)
n = [E

(n+m−1)
1 − E(n−1)

1 ][E
(n+m−1)
1 − E(n−2)

1 ]............[E
(n+m−1)
1 − E(0)

1 ]−
1
2

×A−n−1A
−
n−2.......A

−
1 ψ

(n+m−1)
1(2.2.23)

in which A−n−1 is the annihilation operator of the ground state in the potential

Vn−1(x) [6].
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CHAPTER 3

CALCULATIONS

3.1. Simple Harmonic Oscillator Potential and Wavefunctions

Classically, the Simple Harmonic Oscillator (SHO) is a system subject to a �restor-

ing force� that is linear in displacement from the system's equilibrium point. If

we set x = 0 at that point, then the force is given by: F = −kx, where k is a

positive constant. Hence, the potential energy is V = 1
2kx

2. The usual physical

example of a classical SHO is a mass, m, attached to a spring. Such a system

oscillates with a characteristic frequency, denoted ω. The parameters m,ω and k

are related by: ω =
√

k
m .

In quantum mechanics, the SHO can be solved through �standard� means we form

the classical Hamiltonian, and then quantize it, rewriting it in terms of operators.

(3.1.1) Hψ = Eψ

The time independent Schroedinger Equation can be solved exactly for this sys-

tem, but we'll leave the technical aspects aside, focusing instead on results [34].

Thus in the case of SHO, we have the Potential as

(3.1.2) V (x) =
1

2
mω2x2
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[Fig 2.1.1: Simple Harmonic Oscillator Potential]

for the unperturbed system whose Hamiltonian H0 is taken to be

(3.1.3) H0 =
1

2

(
− d2

dx2 + x2
)

with ω = 1 and m = 1. Then the solution becomes the well-known eigenfunctions

ψn(x) and Eigenvalues En, which are

(3.1.4) ψn(x) =
1

(
√
π2nn!)

1
2

e
x2

2 Hn(x)

(3.1.5) En = n+
1

2
, Cn = 1

where Hn(x) is the Hermite polynomials and the eigenvalue, En, has the unit of

~ω [1].

Here we see the �rst property of the harmonic oscillator - the allowed energy

levels are equally spaced, separated by an amount ~ω, where ω is the classical

oscillation frequency. There is also a �zero point energy� - the �rst allowed state

is not at zero energy, but instead here at ~ω
2 compared to the classical minimum

energy.
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The �rst few Hemite polynomials are as follows:

(3.1.6) H0 = 1

(3.1.7) H1(x) = 2x

(3.1.8) H2(x) = 4x2 − 2

(3.1.9) H3(x) = 8x3 − 12x

(3.1.10) H4(x) = 16x4 − 48x2 + 12

Thus the wavefunction for SHO potential with corresponding eigenvalue can be

found as

[Fig 2.1.2: Wavefunctions for SHO potential]

3.2. Supersymmetric Partner of Simple Harmonic Oscillator

We have the Hamiltonian hierarchy of the superpartner and the form of potential

of the supersymmetric partner. We consider the potential of the SHO as

(3.2.1) V1 =
1

2
mω2x2
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Then we have the Schroedinger Equation as

Hψn = Enψn

=⇒ − ~2

2m

d2

dx2ψ1(x) +
1

2
mω2x2ψ1(x) = (n+

1

2
)ψ1(x)

(3.2.2) =⇒ d2

dx2ψ1(x) +
2m

~2

{(
n+

1

2

)
− 1

2
mω2x2

}
ψ1(x) = 0

We have the solution of this equation for ground state as

(3.2.3) ψ
(0)
1 (x) ∼

1

2
e−

ωx2

2

(
2C1 +

√
πC2erf(x)

)
Here we have taken m = ~ = ω = 1.

[Fig 2.2.1: SHO potential and ground state Wavefunction with eigenvalue]

Thus, the potential of the superpartner can be �nd out by

V2(x) = V1 −
d2

dx2 lnψ
(0)
1
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(3.2.4) =⇒ V2 = 1 +
4e2x2

C2
2

(2C1 +
√
πC2erf(x))

2 +
1

2
x

(
x− 8ex

2

C2

2C1 +
√
πC2erf(x)

)

The potential V1 and it's superpartner V2 is shown in the following graph

[Fig 2.2.2: The potential V1(x) and it's superpartner V2(x)]

The wavefunctions ψ
(m)
2 for the potential V2 we can get by numerically solving

the Schroedinger equation and these are given below.

[Fig 2.2.3: V2(x), ψ
(0)
2 (x) and E

(0)
2 ]

16



[Fig 2.2.4: V2(x), ψ
(1)
2 (x) and E

(1)
2 ]

[Fig 2.2.5: V2(x), ψ
(2)
2 (x) and E

(2)
2 ]

[Fig 2.2.6: V2(x), ψ
(3)
2 (x) and E

(3)
2 ]
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[Fig 2.2.7: V2(x), ψ
(4)
2 (x) and E

(4)
2 ]

[Fig 2.2.8: V2(x), ψ
(5)
2 (x) and E

(5)
2 ]

Wavefunctions for the potential V2 are summarised as

[Fig 2.2.9: The potential V2(x) with wavefuncitons corresponding eigenvalues]

We have calculated third superpartner using equation (2.2.21) analytically and

got the potential V3 and wavefunctions ψ
(m)
3 for V3 as
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[Fig 2.2.10: Third potential V3(x)]

[Fig 2.2.11: The potential V3(x) with wavefuncitons corresponding eigenvalues]

Similarly, solving numerically we have found the following implementation of the

potentials V4 as

[Fig 2.2.12: The potential V4(x) ]
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By solving numerically, we have found that this potential arise some singularity

for V4 as

[Fig 2.2.13: V4(x), ψ
(0)
4 (x) and E

(0)
4 ]

[Fig 2.2.14: Comparision of potential V1, V2, V3 and V4]

And the corresponding ground state wavefunction ψ
(0)
1 , ψ

(0)
2 and ψ

(0)
3 is found as

[Fig 2.2.15: Comparision of ground state wavefuncions ψ
(0)
1 , ψ

(0)
2 and ψ

(0)
3 ]
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3.3. Square Well Potential and Wavefunctions

Let us consider a �nite square well potential such that

(3.3.1) V (x) = {
0 if 0 ≤ x ≤ a

V0 otherwise

That is

[Fig 2.3.1: Square Well Potential]

There is a potential barrier at x = 0 and x = a. Let us consider that V0 = 8 and

a = 5.

At �rst we have to solve the Schroedinger Equation (SE). Since the potential

inside the barrier is zero, we have the SE as

(3.3.2) −~2

2µ

d2

dx2ψ
(m)
1 (x) = E

(m)
1 ψ

(m)
1 (x)

The analytical solution of this di�erential equation will be

(3.3.3) ψ
(m)
1 (x) = Asin(k(m)x) +B cos(k(m)x)
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where A and B are arbitrary constant and

(3.3.4) k(m) =

√
2µE

(m)
1

~2

Putting the boundary condition as

(3.3.5) ψ
(m)
1 (0) = 0 & ψ

(m)
1 (a) = 0

We have the solution as

(3.3.6) ψ
(m)
1 (x) = Asin(k(m)x)

We can �nd out the constant A by taking the normalization condition as

(3.3.7)

ˆ a

0
ψ

(m)∗
1 ψ

(m)
1 = 1

which provide us

(3.3.8) A =

√
2

a

Thus the wavefunction for the square well potential become

(3.3.9) ψ
(m)
1 (x) =

√
2

a
sin(k(m)x)

Since the wavefunction become zero at the boundary we must have

k(m) = 0

which gives us the eigenvalue of energy as

(3.3.10) E
(m)
1 =

~2

2µ

n2π2

a2 = n2E
(1)
1 n = 1, 2, 3..........
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where the superscript 1 at right hand side denotes that the system is in ground

state. With these eigenvalues of energy we have the wavefunction of a particle

inside the potential well as plotted below.

[Fig 2.3.2: Square Well Potential and Wavefunctions with corresponding eigenvalues]

3.4. Supersymmetric Partner of Square Well Potential

In this case, if we apply the Sukumar's process to �nd out the potential of the

supersymmetric partner i.e.,

(3.4.1) V2(x) = V1(x)−
d2

dx2 ln(ψ
(1)
1 (x))

Then we will get potential V2 as

(3.4.2) V2(x) = V1(x) + k(1)cosec2(k(1)x)

Which gives the plot as
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[Fig 2.4.1: V2 for Squre Well Potential]

Eliminating the ground state eigenvalue, we have found the wavefunction of

ground state of the superpartner as

[Fig 2.4.2: V3(x), ψ
(0)
3 (x) and E

(0)
3 ]

Similarly we have found the excited states as

[Fig 2.4.3: V3(x), ψ
(1)
3 (x) and E

(1)
3 ]
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[Fig 2.4.4: V3(x), ψ
(2)
3 (x) and E

(2)
3 ]

[Fig 2.4.5: V3(x), ψ
(3)
3 (x) and E

(3)
3 ]

Thus we get the wavefunctions in the supersymmetric potential as

[Fig 2.4.6: Superpartner V2(x) for Square Well and it's wavefuncitons]
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CHAPTER 4

RESULTS AND DISCUSSION

Since the factorization of the Hamiltonian is necessery to develope the hierarchy of

the potential, we have done such factorization as was done by C. V. Sukumar [6].

Here we have found eigenvalue spectrum for di�erent supersymmetric potential.

We have considered the one dimensional Simple Harmonic Oscillator Potential

(simple case) to calculate superpartner and wavefunctions with corresponding

eigenvalues. In this case, we have calculated the wavefunctions for the SHO at

�rst which is shown in Fig. 2.1.2. The remarkable option is that the ground state

eigenvalue is not zero but 1
2 . Then we have calculated the �rst superpartner V2,

which is given by the Eq. 3.2.4. We have plotted the potential V1 and V2 in Fig.

2.2.2 to compare them. We have found the potential V2 becomes two well in small

value of x, which is predicted by M. Bernstein and L. S. Brown [3]. And there is a

phase equivalnet for the higher value of x. Since we are going through the theory

of elimination of ground state, we have taken the eigenvalue of �rst excited state

of SHO potential as the ground state of its �rst superpartner. To do the analytical

calculation with the potential V2 becomes very tough. So, we have done numerical

calculation here. Using the boundary condition ψ2(−1) = E2 and ψ2(1) = E2,

we have calculated the wavefunctions from ground state to some extend, which

is shown in Fig. 2.2.3 to Fig 2.2.8. Drawing these wavefunctions, we have taken

the normalization condition such as we have just divided the wavefunctions by

the amplitude found in the numerical calculations. We have summuraised all the

wavefunctions for the potential V2, which is shown in Fig 2.2.9, and have found

that except ground state all the wavefunctions are similar with the wavefunctions
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for the potential V1. After doing the calculations for potential V2, we have moved

towards calculating the potential V3 analytically and we have found the plot of

V3 as shown in Fig 2.2.10. Again, we have used numerical calculations for the

potential V3 to �nd the wavefunctions by eliminating the ground state from the

potential V2. We have plotted the potential V3 and wavefunctions with corre-

sponding eigenvalues as shown in Fig 2.2.11. Again we have found the similar

wavefuncitons except ground state. Then we have calculated the 4th superpartner

of the SHO potential V4 which is shown in Fig 2.2.12. When we look at small

value of this potential, we have found some singular point in this potential, which

is shown in Fig 2.2.13. To compare all the potentials we have already calculated

that are plotted the potentials in Fig 2.2.14. We have found that all the potential

have phase equivalent in the high value. The ground state wavefunctions for the

potential V1, V2 and V3 are shown in Fig 2.2.15.

Then we have considered another potential called �nite square well potential.

We have taken the potential as given by the Eq. 3.3.1. We have considered the

value of V0 = 8 and the width of the well is given as 0 ≤ x ≤ 5. Since the

potential is zero inside the well, we have found the Schrödinger equation as Eq

3.3.2. By solving this equation with corresponding eigenvalue and normalizing

the wavefunctions we have found the wavefunctions which are shown in Fig 2.3.2.

Then we have calculated the superpartner V2 analytically as in Eq 3.4.2 and shown

in Fig 2.4.1. By eliminating ground state, we have calculated the wavefunctions

for the potential V2 as shown in Fig. 2.4.2 to 2.4.5 which are summarized in Fig

2.4.6.
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CHAPTER 5

CONCLUSION

In this paper, we have evaluated the potential of the supersymmetric partner in

either case of Simple Harmonic Oscillator potential and Square well potential by

the process of elimination of ground state. We have also plotted the wavefunction

with the corresponding eigenvalue which is done by both analytical and numerical

process. Then we have compared the potential and their superpartner and also

wavefunctions in either case. Since this is a review work, we will illustrate more

about the Hamiltonian hierarchy in thesis work.
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